Deep Learning Meets Chemistry Home ·


Code 

sPhysNet-MT4: GitHub models_cal models_exp 

sPhysNet and PhysNet2: GitHub 

Extended Functional Groups2: GitHub 

Frag20_prepare2: GitHub 

DTNN_7ib1: GitHub Tutorial 

A3D-PNAConv3: GitHub 

CSTShift5: GitHub trained_models 

Datasets 

Name

Size

Download

Frag20-solv-678k & FreeSolv-PHYSPROP-14k4

678,916 / 14,339

Download

Frag202

566296

Download

Plati202

20972

Download

CSD202

39816

Download

QM9M1

133885

Download

eMol9_CM1

88234(9959)

Download

Plati_CM1

4076(74)

Download

Property1


Download

Frag20-Sol-100k3

100000

Download

NMRShiftDB2_DFT5

26353 C, 11983 H

Download

Reference 

1. Predicting Molecular Energy Using Force-Field Optimized Geometries and Atomic Vector Representations Learned from an Improved Deep Tensor Neural Network

2. Dataset Construction to Explore Chemical Space with 3D Geometry and Deep Learning

3. Accurate prediction of aqueous solvation free energies using 3D atomic feature-based graph neural network with transfer learning

4. Multi-task Deep Ensemble Prediction of Molecular Energetics in Solution: From Quantum Mechanics to Experimental Properties

5. Accurate Prediction of NMR Chemical Shifts: Integrating DFT calculations with 3D Graph Neural Networks





Yingkai Zhang's Lab @ NYU