[Back to home] [Citation Info]
126. 1. Chao Han, Dongdong Zhang,Song Xia and Yingkai Zhang, J. Chem. Theory Comput., 20, 5250 - 5258 (2024).
125. Nathan Soper, Isabelle Yardumian, Eric Chen, Chao Yang, Samantha Ciervo, Aaron Oom, Ludovic Desvignes, Mark Mulligan, Yingkai Zhang, Tania Lupoli ACS Chem. Biol., 19,1593 - 1603 (2024).
A repurposed drug interferes with nucleic acid to inhibit the dual activities of coronavirus Nsp13
124. Jianping Li, Ampon Sae Her, Alida Besch, Belen Ramirez-Cordero, Maureen Crames, James R Banigan, Casey Mueller, William M Marsiglia, Yingkai Zhang, Nathaniel J Traaseth Nature Comm., 15, 4537 (2024).
Dynamics underlie the drug recognition mechanism by the efflux transporter EmrE
123. Song Xia, Eric Chen and Yingkai Zhang, J. Chem. Theory Comput., 19, 7478 - 7495 (2023).
Integrated Molecular Modeling and Machine Learning for Drug Design
122. Angel D′Oliviera, Xuhang Dai, Saba Mottaghinia, Evan P. Geissler, Lucie Etienne, Yingkai Zhang, and Jeffrey S. Mugridge elife, 12, RP91168 (2023).
Recognition and Cleavage of Human tRNA Methyltransferase TRMT1 by the SARS-CoV-2 Main Protease
121. Zhiyuan Zhao, Jintong Du, Yu Du, Yuan Gao, Mingxuan Yu, Yingkai Zhang, Hao Fang, and Xuben Hou, J. Chem. Inf. Model., 63, 5896 - 5902 (2023).
Deciphering the Allosteric Activation Mechanism of SIRT6 Using Molecular Dynamics Simulations
120. Alida Besch, William M. Marsiglia, Moosa Mohammadi, Yingkai Zhang, and Nathaniel J. Traaseth Proc. Natl. Acad. Sci., 120, e2213090120 (2023).
Gatekeeper Mutations Activate FGF Receptor Tyrosine Kinases by Destabilizing the Autoinhibited State
119. Song Xia, Dongdong Zhang and Yingkai Zhang, J. Chem. Theory Comput., 19, 659 - 668 (2023). 118. Xiao-Kang Guo and Yingkai Zhang, J. Chem. Inf. Model., 62, 6057 - 6068 (2022). CovBinderInPDB: a Structure-based Covalent Binder Database 117. Chao Yang, Eric Anthony Chen and Yingkai Zhang, Molecules, 27,4568 (2022). Protein-Ligand Docking in the Machine Learning Era 116. Chao Yang and Yingkai Zhang, J. Chem. Inf. Model., 62,2696-2712 (2022). 115. Dongdong Zhang, Song Xia and Yingkai Zhang, J. Chem. Inf. Model., 62, 1840-1848 (2022). 114. Jieyu Lu and Yingkai Zhang, J. Chem. Inf. Model., 62, 1376-1387 (2022). Unified Deep Learning Model for Multi-task Reaction Predictions with Explanation 113. Ashley E. Modell, Frank Marrone III, Nihar R. Panigrahi, Yingkai Zhang and Paramjit S. Arora, J. Am. Chem. Soc., 144, 1198-1204 (2022). Peptide Tethering: Pocket-Directed Fragment Screening for Peptidomimetic Inhibitor Discovery 112. Christian Fischer, Nynke Veprek, Zisis Peitsinis, Peter Rühmann, Chao Yang, Jessica Spradlin, Dustin Dovala, Daniel Nomura, Yingkai Zhang, and Dirk Trauner, Synlett,33, 458 - 463 (2022). De novo Design of SARS-CoV-2 Main Protease Inhibitor 111. Chao Yang and Yingkai Zhang, J. Chem. Inf. Model., 61, 4630 - 4644, (2021). Lin_F9: a Linear Empirical Scoring Function for Protein-Ligand Docking 110. Justin Torner, Yuwei Yang, David Rooklin, Yingkai Zhang, Paramjit Arora, ACS Chem. Biol., 16, 1179 - 1183 (2021). 109. Kai Wen Teng, Steven Tsai, Takamitsu Hattori, Carmine Fedele, Akiko Koide, Chao Yang, Xuben Hou, Yingkai Zhang , Benjamin Neel, John O'Bryan, and Shohei Koide, Nature Commun., 12, 2656 (2021). Selective and Noncovalent Targeting of RAS Mutants for Inhibition and Degradation 108. Yong Xia, Yan Liu, Chao Yang, Diane Simeone, Tung-Tien Sun, David Degraff, Moon-Shong Tang, Yingkai Zhang ,and Xue-Ru Wu, Nature Commun., 12, 2047 (2021). 107. Jianing Lu, Song Xia, Jieyu Lu and Yingkai Zhang , J. Chem. Inf. Model., 61, 1095 - 1104 (2021) Dataset Construction to Explore Chemical Space with 3D Geometry and Deep Learning 106. J. Zhao, A. Blayney, X. Liu, iL. Gandy, W. Jin, L. Yan, J.-H. Ha, A. J. Canning, M. Connelly, C. Yang, X. Liu, Y. Xiao, M. Cosgrove, S. Solmazh, Y. Zhang , D. Ban, J. Chen, S. N. Loh and C. Wang, Nature Commun., 12, 986 (2021). EGCG Binds Intrinsically Disordered N-Terminal Domain of p53 and Disrupts p53-MDM2 Interaction 105. J. Katigbak, H. Li, D. Rooklin, and Y. Zhang , J. Chem. Inf. Model., 60,1494-1508(2020) AlphaSpace 2.0: Representing Concave Biomolecular Surfaces using Beta-Clusters 104. J. Sadek, M. G. Wuo, D. Rooklin, A. Haunstein, S. H. Hong, A. Gautam, H. Wu, Y. Zhang , E. Cesarman, and P. S. Arora, Nature Commun., 11, 1786 (2020). Modulation of Virus-Induced NF-kB Signaling by NEMO Coiled Coil Mimics 103. L. Chen, W. M. Marsiglia, H. Chen, J. Katigbak, H. Erdjument-Bromage, D. J. Kemble, L. Fu, J. Ma, G. Sun,Y. Zhang , G. Liang, T. A. Neubert, X. Li, N. J. Traaseth, and M. Mohammadi, Nature Chem. Biol., 16 , 267-277 (2020). Molecular Basis for Receptor Tyrosine Kinase A-Loop Tyrosine Transphosphorylation 102. J. Du, W. Li, B. Liu, Y. Zhang , J. Yu, X. Hou and H. Fang, Biol. Med. Chem., 28, 115607 (2020). 101. J. Zhao, X. Liu, W. Xia, Y. Zhang , and C. Wang, Front. Mol. Neuroscii., 13, 137 (2020). Targeting Amyloidogenic Processing of APP in Alzheimer’s Disease 100. X. Liu, J. Zhao, Y. Zhang ,I. Ubarretxena-Belandia, S. T. Forth, R. L. Lieberman, and C. Wang, Front. Mol. Neuroscii., 13, 65 (2020). Substrate-enzyme interaction in intramembrane proteolysis: γ-secretase as the prototype 99. X. Hou, J.-P. Sun, L. Ge, X. Liang, K. Li, Y. Zhang , and H. Fang, Eur. J. Med. Chem., 190, 112131 (2020). 98. J. Zhao, Y. Xiao, X. Liu, S. Kim, X. Wu, M. Barros, R. Zhuang, X. Hou,Y. Zhang , N. K. Robakis, Y.-M. Li, J. S. Dordick, I. Ubarretxena-Belandia, and C. Wang, Chem. Commun., 56, 2578-2581 (2020). Substrate interaction inhibits γ-secretase production of amyloid-β peptides 97. Y. Yang, J. Lu, C. Yang, and Y. Zhang , J. Comput. Aided Mol. Des., 33, 1095 - 1105 (2019). Exploring Fragment-based Target Specific Ranking Protocol with Machine Learning on Cathepsin S 96. J. Lu, X. Hou, C. Wang, and Y. Zhang , J. Chem. Inf. Model., 59, 4540 - 4549 (2019) 95. J. Lu, C. Wang, and Y. Zhang , J. Chem. Theory Comput., 15, 4113 - 4121 (2019) 94. W. Marsiglia, J. Katigbak, S. Zheng, M. Mohammadi, Y. Zhang and N. Traaseth , Structure, 27, 1308 - 1315 (2019) A Conserved Allosteric Pathway in Tyrosine Kinase Regulation 93. K. Li, X. Hou, R. Li, W. Bi, F. Yang, X. Chen, P. Xiao, T. Liu, T. Lu, Y. Zhou, Z. Tian, Y. Shen, Y. Zhang , J. Wang, H. Fang, J. Sun, X. Yu, J. Biol. Chem. , 294 , 8653 - 8663 (2019). 92. C. Tse, J. Xu, L. Xu, F. K. Sheong, S. Wang, H. Y. Chow, X. Gao, X. Li, P. Cheung, D. Wang, Y. Zhang, and X. Huang, Nature Catalysis , 2 , 228 - 235 (2019). 91. J. Lei, G. Sheng, P. P.-H. Cheung, S. Wang, Y. Li, X. Gao, Y. Zhang, Y. Wang and X. Huang, Proc. Natl. Acad. Sci. , 116 , 845-853 (2019). 90. X. Hou, D. Rooklin, D. Yang, X. Liang, K. Li, J. Lu, C. Wang, P. Xiao, Y. Zhang, J.-P. Sun, and H. Fang, J. Chem. Inf. Model. , 58 , 2331-2342 (2018). 89. H. Mu, Y. Zhang, N. Geacintov, and S. Broyde, Chem. Res. Toxicol. , 31 , 1260-1268 (2018). 88. L. Qiu, J. Song, Y. Zhang and J. Zhang, Mol. Phys. , 116 , 2613-2621 (2018). Functional Loop Dynamics of the S-Component of ECF Transporter FolT. 87. Y. Cai, I. Fu, N. Geacintov, Y. Zhang and S. Broyde, DNA Repair , 65 , 73-78 (2018). 86. D. W. Rooklin, A. E. Modell, H. Li, V. Berdan, P. S. Arora, and Y. Zhang, J. Am. Chem. Soc. , 139 , 15560-15563 (2017). Targeting Unoccupied Surfaces on Protein-Protein Interfaces. 85. C. Wang and Y. Zhang, J. Comput. Chem. , 38 , 169-177 (2017). Improving Scoring-Docking-Screening Powers of Protein-Ligand Scoring Functions using Random Forest 84. H. Mu, N. E. Geacintov,J. H. Min, Y. Zhang, and S. Broyde, Chem Res Toxicol. , 30 , 1344 - 1354 (2017). 83. C. Chen, X. Hou, G. Wang, W. Pan, X. Yang, Y. Zhang, and H. Fang, Eur. J. Med. Chem. , 133,11-23 (2017). Design, synthesis and biological evaluation of quinoline derivatives as HDAC class I inhibitors 82. I. Fu, Y. Cai, Y. Zhang, N. E. Geacintov, and S. Broyde, Biochemistry , 56 ,1963-1973 (2017). 81. X. Hou, D. Rooklin, H. Fang and Y. Zhang, Sci. Rep. , 6,38186 (2016). Resveratrol Serves as a Protein-Substrate Interaction Stabilizer in Human SIRT1 Activation 80. Y. Zhou, S. Wang, Y. Li and Y. Zhang, Methods in Enzymology , 577,105-118 (2016). Born-Oppenheimer Ab Initio QM/MM Molecular Dynamics Simulations of Enzyme Reactions 79. H. Hu, J. B. Diccianni, J. Katigbak, C. Hu, Y. Zhang, and T. Diao, J. Am. Chem. Soc. , 138, 4779-4786 (2016). Bimetallic C-C Bond-Forming Reductive Elimination from Nickel 78. Y. Zhou, D. Xie and Y. Zhang, J. Phys. Chem. Lett. , 7, 1138-1142 (2016). Amide Rotation Hindrance Predicts Proteolytic Resistance of Cystine-Knot Peptides 77. I. Fu, Y. Cai, Y. Zhang, N. E. Geacintov, and S. Broyde, Biochemistry , 55 , 239 - 242 (2016). 76. D. W. Rooklin, C. Wang, J. Katigbak, P. S. Arora, and Y. Zhang, J. Chem. Inf. Model. , 55 , 1585 - 1599 (2015). AlphaSpace: Fragment-Centric Topographical Mapping to Target Protein-Protein Interaction Interfaces 75. W. Gong, R. Wu, and Y. Zhang, J. Comput. Chem. , 36 , 2228 - 2235 (2015). 74. H. Mu, N. E. Geacintov, Y. Zhang, and S. Broyde, Biochemistry , 54 , 5263 - 5267 (2015). 73. J. Lei, Y. Zhou, D. Xie and Y. Zhang, J. Am. Chem. Soc. , 137, 70-73 (2015). Mechanistic Insights into a Classic Wonder Drug - Aspirin 72. N. Zhou, Q. Wu, and Y. Zhang, ``Force field development with density-based energy decomposition analysis ,'' in Many-body effects and electrostatics in multi-scale computation of Biomolecules (Qiang Cui, Markus Meuwly and Pengyu Ren, eds.) , 2015. 71. J. Zhou, M. Li, N. Chen, S. Wang, H. B. Luo, Y. Zhang, and R. Wu, ACS Chem. Biol. , 10 , 687-692 (2015). Computational Design of a Time-Dependent Histone Deacetylase 2 Selective Inhibitor 70. X. Xiao, N. Kallenbach and Y. Zhang, J. Chem. Theory Comput., 10, 4152-4159 (2014). Peptide Conformation Analysis using an Integrated Bayesian Approach 69. L. Lior-Hoffmann, S. Ding, N. E. Geacintov, Y. Zhang and S. Broyde, Biochemistry, 53, 5683-5691 (2014). 68. N. Zhou, Z. Lu, Q. Wu and Y. Zhang, J. Chem. Phys., 140, 214117 (2014). 67. G. S. Sirin, Y. Zhang , J. Phys. Chem. A, 118,9132-9139 (2014) How is Acetylcholinesterase Phosphonylated by Soman? An ab initio QM/MM Molecular Dynamics Study 66. Y. Cai, H. Zheng, S. Ding, K. Kropachev, A. G. Schwaid, Y. Tang, H. Mu, S. Wang, N. Geacintov, Y. Zhang and S. Broyde, Chem. Res. Toxicol, 26, 1115-1125 (2013). 65. J. Yang, L. Lior-Hoffmann, S. Wang, Y. Zhang , and S. Broyde, Biochemistry, 52, 2828-2838 (2013) 64. Y. Shi, Y. Zhou, S. Wang, Y. Zhang , J. Phys. Chem. Lett., 4 , 491-495 (2013) Sirtuin Deacetylation Mechanism and Catalytic Role of the Dynamic Cofactor Binding Loop 63. G. S. Sirin, Y. Zhou,L. Lior-Hoffmann, S. Wang, Y. Zhang , J. Phys. Chem. B, 116, 12199-12207 (2012) Aging Mechanism of Soman Inhibited Acetylcholinesterase 62. D. W. Rooklin, M. Lu, Y. Zhang , J. Am. Chem. Soc., 134, 15595-15603 (2012) 61. L. Lior-Hoffmann, L. Wang, S. Wang, N. Geacintov, S. Broyde and Y. Zhang , Nucleic Acids Res., 40, 9193-9205 (2012) 60. Y. Zhou, S. M. Moin, S. Urban, Y. Zhang , Structure, 20, 1255-1263 (2012) 59. R. Wu, Z. Cao, Y. Zhang Progress in Chemistry, 24,1175-1184 (2012) Computational Simulations of Zinc Enzyme: Challenges and Recent Advances 58. R. Wu, W. Gong, T. Liu, Y. Zhang and Z. Cao, J. Phys. Chem. B, 116, 1984-1991 (2012) QM/MM Molecular Dynamics Study of Purine-Specific Nucleoside Hydrolase 57. Z. Lu, N. Zhou, Q. Wu, Y. Zhang, J. Chem. Theory Comput.,7, 4038-4049 (2011). 56. Z. Ke, G. Smith, Y. Zhang and H. Guo, J. Am. Chem. Soc., 133, 11103-11105 (2011) Molecular Mechanism for Eliminylation, a Newly Discovered Post-Translational Modification 55. R. Wu, Z. Lu, Z. Cao and Y. Zhang, J. Am. Chem. Soc., 133, 6110-6113 (2011). 54. Z. Ke, H. Guo, D. Xie, S. Wang and Y. Zhang, J. Phys. Chem. B, 115, 3725-3733, (2011). 53. R. Wu, Z. Lu, Z. Cao and Y. Zhang, J. Chem. Theory Comput., 7, 433-443 (2011). A Transferable Non-bonded Pairwise Force Field to Model Zinc Interactions in Metalloproteins 52. Y. Zhou and Y. Zhang, ChemComm, 47, 1577-1579 (2011). 51. H. Zheng, Y. Cai, S. Ding, Y. Tang, K. Kropachev, Y. Zhou, L. Wang, S. Wang, N. Geacintov, Y. Zhang and S. Broyde, Chem. Res. Toxicol, 23, 1868-1870 (2010). Base Flipping Free Energy Profiles for Damaged and Undamaged DNA. 50. H. B. Xie, Y. Zhou, Y. Zhang and J. K. Johnson, J. Phys. Chem. A, 114, 11844-11852 (2010). Reaction Mechanism of Monoethanolamine with CO2 in Aqueous Solution from Molecular Modeling 49. R. Wu, S. Wang, N. Zhou, Z. Cao and Y. Zhang, J. Am. Chem. Soc. , 132, 9471-9479 (2010). A Proton-Shuttle Reaction Mechanism for Histone Deacetylase 8 and the Catalytic Role of Metal Ions 48. Y. Zhou, S. Wang and Y. Zhang, J. Phys. Chem. B, 114, 8817-8825 (2010). 47. R. Wu, P. Hu, S. Wang, Z. Cao and Y. Zhang, J. Chem. Theory Comput., 6, 337-343 (2010). Flexibility of Catalytic Zinc Coordination in Thermolysin and HDAC8: A Born-Oppenheimer ab initio QM/MM Molecular Dynamics Study 46. Z. Ke, S. Wang, D. Xie and Y. Zhang, J. Phys. Chem. B, 113, 16705-16710 (2009). Born-Oppenheimer Ab Initio QM/MM Molecular Dynamics Simulations of the Hydrolysis Reaction Catalyzed by Protein Arginine Deiminase 4 45. J. Liu, Y. Zhang and C. G. Zhan, J. Phys. Chem. B, 113, 16226-16236 (2009) . 44. H. Zheng and Y. Zhang, J. Chem. Phys., 131, 214105 (2009). Introducing Sampling Entropy in Repository Based Adaptive Umbrella Sampling 43. Q. Wu, P. W. Ayers and Y. Zhang, J. Chem. Phys., 131, 164112 (2009). 42. K. Fahie, P. Hu, S. Swatkoski, R. Cotter, Y. Zhang, and C. Wolberger. FEBS J., 276, 7159-7176 (2009). Side chain specificity of ADP-ribosylation by a sirtuin 41. Z. Lu, J. Lai, Y. Zhang, J. Am. Chem. Soc. , 131, 14928-14931 (2009). Importance of Charge Independent Effects in Readout the Trimethyllysine Mark by HP1 Chromodomain. 40. H. Zheng, S. Wang and Y. Zhang, J. Comput. Chem., 30, 2706-2711 (2009). 39. Z. Ke, Y. Zhou, P. Hu, S. Wang, D. Xie and Y. Zhang, J. Phys. Chem. B, 113, 12750-12758, (2009). ( Cover) 38. L. Wang, S. Broyde and Y. Zhang, J. Mol. Biol., 389, 787-796 (2009). 37. Y. Zhang, Ab Initio Quantum Mechanical/Molecular Mechanical Studies of Histone Modifying Enzymes. in Multi-scale Quantum Models for Biocatalysis: Modern Techniques and Applications., 341-350, Darrin M. York and Tai-Sung Lee eds., Springer Verlag, New York, 2009. 36. P. Hu, S. Wang and Y. Zhang, J. Am. Chem. Soc. , 130, 16721-16728 (2008). 35. Z. Lu and Y. Zhang, J. Chem. Theory Comp., 4, 1237-1248 (2008). 34. H. Zheng and Y. Zhang, J. Chem. Phys. ,128, 204106 (2008). 33. P. Hu, S. Wang and Y. Zhang, J. Am. Chem. Soc. , 130, 3806-3813 (2008). 32. Z. Liu, A. W. Young, P. Hu, A. J. Rice, C. Zhou, Y. Zhang and N. R. Kallenbach, ChemBioChem , 8, 2063-2065 (2007). Tuning Selectivity of Antimicrobial Peptides by Multivalent Design. 31. C. Xiao and Y. Zhang, J. Chem. Phys., 127, 124102 (2007). 30. C. Xiao and Y. Zhang, J. Phys. Chem. B , 111, 6229-6235 (2007). 28. S. Wang, P. Hu and Y. Zhang, J. Phys. Chem. B , 111, 3758-3764 (2007). 27. C. Corminboeuf, P. Hu, M. E. Tuckerman and Y. Zhang, J. Am. Chem. Soc. , 128, 4530-4531 (2006). 26. P. Hu and Y. Zhang, J. Am. Chem. Soc. , 128, 1272-1278 (2006). 25. Y. Cheng, Y. Zhang and J. A. McCammon, Protein Sci. , 15, 672-683 (2006). 24. V. V. Karambelkar, C. Xiao, Y. Zhang, A. Sarjeant and D. P. Goldberg, Inorg. Chem. , 45, 1409--1411 (2006). 23. Y. Zhang, Theor. Chem. Acc. , Special Issue of ``New Perspectives in Theoretical Chemistry'' , 116, 43-50 (2006). 22. C. F. Wong, J. Kua, Y. Zhang, T. P. Straatsma and J. A. McCammon, Proteins, 61, 850-858 (2005). 21. X. H. Chen, Y. Zhang, J. Z.H. Zhang, J. Chem. Phys., 122, 184105 (2005). 20. Y. Zhang, J. Chem. Phys., 122, 024114 (2005). 19. Y. Cheng, Y. Zhang, and J. A. McCammon, J. Am. Chem. Soc., .127, 1553 -1562 (2005). 18. A. M. Gao, D.W. Zhang, J. Z.H. Zhang and Y. Zhang , Chem. Phys. Lett., 394, 293-297 (2004). 17. J. Kua, Y. Zhang, A. C. Eslami, J. R. Butler, and J. A. McCammon, Protein Sci., 12, 2675-2684 (2003) 16. G. A. Cisneros, H. Liu, Y. Zhang, and W. Yang, J. Am. Chem. Soc., 125, 10384-10393 (2003). 15. Y. Zhang, J. Kua and J. A. McCammon, J. Phys. Chem. B, 107, 4459-4463 (2003). 14. Y. Zhang and J. A. McCammon, J. Chem. Phys., 118, 1821-1827 (2003). 13. Y. Zhang, J. Kua and J. A. McCammon, J. Am. Chem. Soc., 124, 10572-10577 (2002). 12. J. Kua, Y. Zhang and J. A. McCammon, J. Am. Chem. Soc., 124, 8260-8267 (2002). 11. Y. Zhang, H. Liu, and W. Yang, ``Ab initio qm/mm and free energy calculationsof enzyme reactions,'' 10. Y. Zhang, H. Liu and W. Yang , J. Chem. Phys, 112, 3483-3492 (2000). 9. H. Liu, Y. Zhang and W. Yang , J. Am. Chem. Soc. , 122, 6560-6570 (2000). 8. W. Yang, Y. Zhang and P. W. Ayers, Phys. Rev. Lett., 84, 5172-5175 (2000). 7. Y. Zhang and W. Yang, Theore. Chem. Acc., 103, 346-348 (2000). 6. C. Enkvist, Y. Zhang and W. Yang, Int. J. Quan. Chem., 79, 325-329 (2000). 5. Y. Zhang, T. S. Lee and W. Yang, J. Chem. Phys., 110, 46-54 (1999). 4. Y. Zhang and W. Yang, J. Chem. Phys.,109, 2604-2608 (1998). 3. Y. Zhang and W. Yang, Phys. Rev. Lett., 80, 890 (1998). 2. Y. Zhang, W. Pan and W. Yang, J. Chem. Phys., 107, 7921-7925 (1997). 1. Y. Zhang, G. Wang and Y. Jiang, J. of Nanjing Univ. (Natural Science Edition), 29, 400-406 (1993). Last modified: Sep 1, 2021
Design-Atom Approach for the Quantum Mechanical/Molecular Mechanical Covalent Boundary: A Design-Carbon Atom with Five Valence Electrons.
Catalytic Mechanism and Metal Specificity of Bacterial Peptide Deformylase: a Density Functional Theory QM/MM Study.
29. L. Wang, X. Yu, P. Hu, S. Broyde and Y. Zhang, J. Am. Chem. Soc. , 129, 4731-4737 (2007).
A Water-mediated and Substrate-assisted Catalytic Mechanism for Sulfolobus solfataricus DNA Polymerase IV
Ab initio Quantum Mechanical/Molecular Mechanical Molecular Dynamics Simulation of Enzyme Catalysis: The Case of Histone Lysine Methyltransferase SET7/9
Unexpected Deacetylation Mechanism Suggested by a Density Functional Theory QM/MM Study of Histone-Deacetylase-Like Protein
Catalytic Mechanism and Product Specificity of the Histone Lysine Methyltransferase SET7/9. An ab initio QM/MM-FE
Study with Multiple Initial Structures.
How does Activation Loop Phosphorylation Modulate Catalytic Activity in the cAMP-dependent Protein Kinase:
A Theoretical Study.
Geometric Preferences in Iron(II) and Zinc(II) Model Complexes of Peptide Deformylase.
Pseudobond ab initio QM/MM approach and its Applications to Enzyme Reactions.
Molecular Docking of Balanol to Dynamics Snapshots of Protein Kinase A.
An efficient approach for ab initio energy calculation of biopolymers.
Improved Pseudobonds for Combined ab initio Quantum Mechanical/Molecular Mechanical (QM/MM) Methods.
How Does the cAMP-Dependent Protein Kinase Catalyze the Phosphorylation Reaction: an ab initio QM/MM Study
An efficient linear scaling method for ab initio calculation of electron density of proteins.
Studying the Roles of W86, E202, Y337 in Binding of Acetylcholine to Acetylcholinesterase using a Combined Molecular Dynamics and Multiple Docking Approach
Ab Initio QM/MM Study Shows There Is No General Acid in the Reaction Catalyzed by 4-Oxalocrotonate Tautomerase
Influence of Structural Fluctuation on Enzyme Reaction Energy Barriers in Combined Quantum Mechanical/Molecular Mechanical Studies.
Studying the Affinity and Kinetics of Molecular Association with Molecular Dynamics Simulation.
Role of the Catalytic Triad and Oxyanion Hole in Acetylcholinesterase Catalysis: An ab initio QM/MM Study.
Studying Enzyme Binding Specificity in Acetylcholinesterase using a Combined Molecular Dynamics and Multiple Docking Approach.
in Computational Methods for Macromolecules -Challenges and Applications (T.~Schlick and H.~H. Gan, eds.), 332-354, Springer-Verlag, 2002.
How is the active site of enolase organized to catalyze two different reaction steps?
Degenerate Ground States and a Fractional Number of Electrons in Density and Reduced Density Matrix Functional Theory,
Perspective on ``Density-Functional Theory for Fractional Particle Number:Derivative Discontinuities of the Energy'' by J.P. Perdew, R.G. Parr,M. Levy and J.L. Balduz,Jr.
Density Functional Study of a Weakly Hydrogen Bonded Benzene-Ammonia Complex: the Importance of the Exchange Functional .
A Pseudobond Approach to Combining Quantum Mechanical and Molecular Mechanical Methods.
A Challenge for Density Functionals: Self-interaction Error Increases for Systems with a Noninteger Number of Electrons.
Comment on "Generalized Gradient Approximation Made Simple" .
Describing van der Waals Interactions in Diatomic Molecules with Generalized Gradient Approximations: the role of the Exchange Functional .
Application of the Faraday Effect in Chemistry.